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Section 1

PREFACE

In the portion of the report which follows, we present the results

of studies of the statistical structure of turbulence. Such studies
performed under this contract have three aims:

(1) To gather empirical evidence on the probabilistic aspects of
turbulence in order to provide motivation and insight for
development of theoretical models;

(2) To compare the statistical structure of boundary layer turbulence
at Cape Kennedy with that measured in other observational programs;

(3) To attempt to use the resulting information in the construction
of methods that can be used to take account of the effects of

turbulence in the study and design of aerospace vehicles.

vii



I. SIMULATION OF ATMOSPHERIC TURBULENCE
WLTH EMPIRICAL ORTHOGONAL FUNCTIONS

John A. Dutton and Dennis G. Deaven

1.1 Introduction

Simulated time histories of turbulent motion are required in a variety
of engineering applications, and their use appears to be increasing as more
sophisticated design studies are attempted. As one example, such time
histories are used to provide a simulated environment for vehicle simulators
used in the study of crew response to turbulence. As another, the time
histories are necessary if non-linear effects are to be studied by analog
or digital computation.

Several requirements must be imposed on time histories in such
simulation studies if the effects of turbulence are to be determined
accurately and in a useful manner. These include:

(1) It must be possible to assess the likelihood of occurrence of

any time history used in the simulation so that the degree to
which results are representative is known.
(2) The individual time histories must have the sequential
characteristics of actual turbulence, the most notable being
that the energy spectrum should be proportional to the -5/3
power of the wave-number or frequency over quite a wide range.

(3) The time histories should exhibit the probabilistic structure
of actual turbulence, modeling correctly the observed non-
Gaussian behavior of the density function and the exceedance
statistics.

A consequence of the last two requirements is that the simulated turbulence

will contain the element of surprise so prevalent in actual turbulence.



Most methods for simulating turbulence now in use fail to satisfy
all three criteria (Dutton, 1968). The use of observed records will
obviously satisfy the last two requirements but it appears difficult to
satisfy the first. We present here an initial study of a method that
offers considerable potential. It is based on the Loeve (1963)
decomposition of turbulent time histories using the empirical orthogonal

functions discussed- by Dutton (1969) in NASA CR-1410.

1.2 Review of the Method of Decomposition

The empirical orthogonal functions are obtained from an ensemble

{u(t)} of time histories of turbulence by forming the covariance matrix
(1.1) R(t,t') = E {u(t) u")}

and solving the integral equation defined on an appropriate domain
(1.2) f R(t,t") ¢n (£') dt' = An ¢n (t)

for the eigenvalues, An’ and the eigenfunctions, ¢n. The eigenfunctions

satisfy the orthonormality condition
(1.3) J ¢ (&) ¢ (t) de =98

and we have an expansion for each function, u(t), in the form

[oo]

(1.4) u(t) =) a_ ¢_ (t)

n 'n
n=1



in which
.5) a = I u(t) ¢n (t) dt

The coefficients are also orthogonal across the ensemble in the

sense that
(1.6) E {an al=x 6
and thus it can be shown that

(1.7)  R(e,e") =) A ¢ (©) ¢ (")

n=1

The significant fact about the eigenfunctions is that if we arrange

them in order of decreasing An’ then for each N, the expansion

N
(1.8) uN(t) =) a ¢n (t)

n=1

will explain more of the variance in the ensemble than would be explained

by any other set of functiomns in the sense that the error
(1.9) e, = E {u(®) - u ()}
: N N

is a minimum.
Thus the empirical orthogonal functions provide a scheme in which the

characteristics of temporal sequencing common to the ensemble are represented



by the eigenfunctions, and the individual variations for each time history
are represented in the coefficients.
The simulation method to be studied here involves the following steps:
(1) Obtain a large ensemble of time histories of turbulence;
(2) Find the eigenfunctions, eigenvalues, and the coefficients of
each of the time histories;
(3) Determine the probabalistic structure of the coefficients;
(4) Obtain simulated time histories with known likelihood of
occurrence (with respect to the original ensemble) by
sampling from the distribution of the coeffieients.
This scheme should meet all three criteria stated in the introduction;
this is a report on a first attempt to carry out the program represented by
the four steps above to determine whether there is indeed a possibility of

success.

1.3 Computational Methods

At the time the previous report (Dutton, 1969) was prepared, we were not
able to find eigenfunctions for time histories because of computational
restrictions on the length of the data sample.

In practice, we have N gust histories, each with M points. The
correlation function is approximated by (we now use averages across the
finite ensemble to replace the expectation, E)

N

1
(1.10) R(ti,tj) =3 Y u_(t,) un(tj)

n=1

and this is a matrix of size M x M. If we let D be the N x M matrix containing

the observed data, then the correlation matrix is R = DTD/N and this is of



order M x M. When the time histories contain several hundred points it
becomes uneconomical to find the eigenvalues and eigenvectors for R by
matrix diagonalization.

An alternative approach has been suggested by Hirose and Kutzbach

(1969). We form instead the matrix
(1.11) S =D DL/

which is of order N x N, and thus, in our case with turbulence, very much
smaller than R. Now we 1;t LS and VS be the (diagonal) eigenvalue and the
eigenvector matrices associated with S. Then, because we can have at most
N positive eigenvalues, LS = Lr' The transformation

T -1/2
1.12)  v_=DV_ (@ M

gives the eigenvectors for R. (For a proof see, Law and Fariss, 1968.)
Thus the diagonalization necessary to find the eigenvectors is performed
on a smaller matrix, S, and then Vr is obtained by matrix multiplication.

In this study, we use three gust time histories obtained by the
National Aeronautical Establishment of Canada (Mather, 1967); statistical
characterisfics of these records have been discussed by Dutton (1968) and
Dutton, Thompson, and Deaven (1969). Some 1024 points from each component
for each of three runs were selected to give nine time histories. The
1024 points represent a total distance of 980 m; the sampling interval
was 9.5 m. The ensemble of nine histories was normalized so that

9
.13 E {u(t)} -3 1 u () =0 G =1,2, ... M)

=1



and so that

T 9 1024

(1.14) E {%J a® dt} =—;— ) {ﬁ ) unz(tj)} =1

o n=1 j=1

Thus there were eight non-zero eigenvalues and eigenfunctions possible

representing the eight linearly indpendent normalized time histories.

1.4 Characteristics of the Eigenfunctions

The resulting eigenfunctions appear, as might be expected, to be similar
to time histories of turbulence themselves. The function associated with the
larges eigenvalue explained 66 percent of the variance in this ensemble. The
eigenfunctions are shown in Figure 1.1. Two points are worth noting in the
figure. The high-frequency content appears to increase with the order of the
eigenvalue. Moreover, abrupt changes presumably associated with surprise
occur in the higher order eigenfunctions; note particularly those in the
fourth, fifth, and seventh eigenfunctions.

The variance spectra of the eigenfunctions were computed to determine
whether the second criterion would be satisifed. The spectra shown in
Figure 1.2 reveal the -5/3 slope over most the range of wave-numbers
present, with some loss of low-frequency energy in the spectra of the
higher order functions.

The expansion defined by Equation 1.4 shows that the Fourier transforms
will obey the relation

N N
iwt

T
i J u(t) e ™dae =Y a ¢ (W
Y27TT

o n=1

(1.15) . (w) =



+0. 1
W*WAW“WWWW'M MMW%(D. 26)
~0. 1 "

DISTANCE

Figure 1.1 Normalized eigenfunctions computed from NAE data. The eigenvalues associated with
each function are shown on the right. The plot spans 980 m of horizontal distance.
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Figure 1.2 Spectra of the normalized eigenfunctions shown in Figure 1.1.
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and thus, taking account of Equation 1.6, the average spectrum becomes

2 N ~ 2 N
(1.16) e =E {[6, |“T= ] Ao wl|“= 3 A ‘I’,n(‘*‘)
T
=1 n=1

where @n is the spectrum of the nth eigenfunction. Thus the average spectrum

will have the required -5/3 behavior.

1.5 Construction of Simulated Gust Histories

The simulation method being studied here, proposed by Dutton (1968),
uses these eigenfunctions to construct artificial time histories simulating
turbulence. Suppose that in addition the lack of correlation expressed by
Equation 1.4, the coefficients were also independent in the sense that the

probability density function obeys a relation

(1.17) P (al, g5 = -+ s an) =1, (al) P, (az) P (an)

Then we could form the distribution function,

1
=

a
(1.18)  F, (a) = f p; (8) a, ¢l & N)

—00
in which the subscript denotes the function associated with the coefficients
_ .th :
of 1 order, and then use a random number generator to produce variates
from a Gaussian population. Let r be such a number and let the Gaussian
distribution function be FG(r). Then a coefficient, a, with a cumulative

probability FG(r) is obtained from the operation
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_ -1
(1.19) a(r) = F, [FG(r)]
which Fi—l is Fhe function inverse to Fi’ that is
(1.20) F, L [F.(@)] = a
- i i

A sketch of the computational procedure is shown in Figure 1.3. Clearly
a sample of coefficients whose distribution approaches the observed one will
be produced as increasingly large sample are obtained in this manner.

If we let r = (rl, r2, e e ey rN) be a vector of independent, Gaussian
variables, and if Equation 1.17 holds, the probability of the particular

realization

]
=

N
(1.21) uE (tj) = u(tj) + ) a(r ) ¢ (tj) G .5 M)

n=1
obtained from the simulated gust profiles about the ensemble mean ﬁ(t), can

be assessed from the probability density
(1.22)  p=p; (r) pg (x)) « . . pg (r)

In the finite case represented by eigenvectors obtained from Equation 1.10
only N of the M values ur(tj) are independent of each other because any N
values in the second term of Equation 1.22 could be used to solve for N
coefficients a . To see why this is true, note that the initial data records
contain N x M pieces of information. The eigenfunctions are linear combinations
of these data and represent N x M pieces of information subject to the

orthonormality condition (Equation 1.3). Hence there are N x N pieces of
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PROBABILITY

—>» Q

Figure 1.3 Sketch illustrating the algorithm used to obtain values of the
coefficients by sampling from their distribution.
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information in the eigenfunction set that are not independent and so the
eigenfunctions contain (N x M) - (N x N) independent:pieces of information.
The coefficients {an} are another set of (N x N) pieces of information,
and in combination with the eigenfunctions, will give back the original
data set with N x M pieces of information. Of course Equation 1.6 shows
that the coefficients only have N x (N - 1) independent pieces of
information, the N final independent data being the eigenvalues themselves.
Thus we have a conditional probability problem. First, we must
determine the probability of encountering the ensemble (or covariance
matrix) with which we began. This probability can presumably be estimated
by considering the ensemble in relation to the total collection of empirical
data about turbulence. Next we must determine the probability of obtaining
a particular function by sampling in this ensemble, a probability characterized

by the Nth order joint distribution

uy g
(1.23) Pu (ul, Uys oo uN) = J e J P, (El, e EN) dEl dEN

-—00 OO

in which u, = u(t.).
i i

With equation 1.21 we find that

(1.24) - T Y
d(uy, . . . )
1° > Uy
pla;s -« - .5 a) |7 da,, ., da
1 ay 3Gay, - - > ap | N

But we have assumed that the coefficients are independent and that each depends

on r, so that
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(1.25) P, (El, coees Ey) dgy, L. L dEy =

da, ofu,, . . . )l
N i i’ » Uy
1 P i) G ] COP | dry . . . dry
i=1 i !

The Jacobian determinant contains values of the eigenfunctions, ¢1(t1), ¢1(t2),
e s Bo(E1)s dy(Ey)s o ey B (e

From Equation 1.25 we see that if dai/dr:,L is approximately constant or a
maximum near r, = 0, then the time histories with the largest probability
within the ensemble will be those obtained when Ty =T, = .. .=1Ty= 0.

Thus the most likely function obtained by sampling is the one for which
a; =8, =...a; = 0, and so the most likely function ur(t) is the mean
function u(t).

A sample of nine simulated time histories was obtained in this manner,
assuming that Equation 1.17 is true. The simulated turbulence records are
shown in Figure 1.4; their statistical characteristics illustrated in
Figure 1.5.

The simulated time histories, as a group, have the correct behavior
near the origin of the probability density function, but do not appear to
contain as many very large gusts as the original data. The exceedance
statistics shown in Figure 1.4 verify this conclusion.

The apparent failure to represent the large gusts correctly may very
well be due to a dependence between the coefficients of the various functions
in the ensemble. The next step in the investigation is to pursue the questions
associated with this possible dependence.

The appearance of some degree of dependence would not seriously compromise

the method; sampling would have to be done from joint distributions rather

than individual ones. On the basis of the results presented here it appears
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Figure 1.4 Simulated turbulence records obtained as explained in the text (Equation 1.21) by
combining the mean function and the gust function constructed with the sampled
coefficients. The plot spans 980 m of horizontal distance.
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that the method is a qualified success, and that further investigation and

testing are merited.
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SECTIONS II, III, and IV

A considerable number of wind statistics at the Kennedy tower can
be estimated from the roughness length (see chapter 3), and the winds
and temperatures at 18 m and 30 m only.

First, the winds and temperature are used to define a Richardson

number at 23 m, from which L follows by Businger's hypothesis:

L = 23 m/Ri
o

Then the surface stress is given by

DI<:]
o

KV,
°  tn i—g—m- - $(z/L)

o
Standard deviations of u at 18 m follow by multiplying Usk by 2.3. The
standard deviation of v is obtained by multiplications of Us by a quantity
which can be read as function of z/L from Figure 4.4.
Standard deviations at other levels are obtained by subtracting from

the standard deviations at 18 m quantities obtained as function of V from

18
Figures 4.9 and 4.10.

Dissipation rates at various levels are given by:

u 3
*x
(o)
£ = ) [l - 18

E;._l/4 oz
L L
o o)
These can also be used to estimate high-frequency portions of the u and v

spectra (up to about 1/k = 3z) by applying
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S(k) = a e2/3 5/3

where a is about 0.50 for u and 0.65 for v, if k is in radians per unit
length.

Coherences up to 100 m height are obtained from

coh(n) = e 2 B%E

where a is 19 for u and 13 for v. Az is the height difference and V is the
mean wind in Az, which is sufficiently accurately given (for this purpose)

by
= — 0.25
V = V18(2/18)

Slopes are 2.0 for v and 1.0 for u below 100 m and 1.0 and 0.3 above 100 m.

Cospectra and quadrature spectra are prescribed by:

cosp(n) = /Sl(n)sz(n)COh(n) cos Zﬂ??zs
v
and
quad(n) = )/Sl (n)S2 (n)coh(n) sin ZTTn—Azs
v

In general, winds at high levels on the tower can be estimated from

B
Z
V=Yg [ﬁ]
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where B depends on E—-and %. The optimum relationship for Kennedy is now
under study.

In order to obtain Ri = z/L for some of the computations above, winds
at two levels were needed. However, z/L can be estimated from a bulk

Richardson number at 18 m:

according to nomograms prepared by Panofsky and Prasad (1965). The usefulness
of this nomogram for Kennedy data is now being investigated, and empirical
corrections may be applied. If successful, all the estimates discussed here
can be made from wind observations at 18 m only.

In future work, the various statistics will be related to information

available on weather charts and atlases.

REFERENCES
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Air and Water Pollution, 9, 419-430.
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IT. [ESTIMATION OF COHERENCE AND SLOPE

H. A. Panofsky and B. R. Kerman

2.1 Introduction

A general system describing missile response to atmospheric forcing
can be based on the covariance tensors of Cartesian velocity components.
This tensor, for a scalar component for a time lag t, and positional

separation Axi, can be written

. o . i,

Ri(t, Axi) = j S(n) ¢cohi(n) cos 2T n (é%_ Si - t) dn (2.1)
o

where S(n) is geometric mean of the spectra of the component at two positions

and Si is the slope of the maximum correlation with distance AxT. The

coherence, cohi(n), has been demonstrated to be well approximated by
n Axi
\

which, if Taylor's hypothesis

exp(—ai Afi) (Davenport, 1961), where Afi =
is satisfied, is the ratio of the displacement to the wavelength. It will be
the purpose of this section to demonstrate some new estimates for parameters
describing the coherence and slope of horizontal wind components, both under

neutral stratification, and tentatively under stable and unstable stratification.

2.2 Coherence

As mentioned previously, the coherence has been shown to be well

represented as

cohi(Afj) = exp (-a; aed) (2.2)

n ij

where Afd = and i,j = 1,2,3 refer to longitudinal, lateral and vertical

<3
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wind components. An excellent survey of collated results from numerous
previous experiments as well as that at Cape Kennedy is given by Plelke (1969).

Considering for the moment only previous results of Cape Kennedy data,
Pielke found that, under neutral stratification, the decay constant for

longitudinal components for vertical separations al ~ 22 and that for lateral

3
components ag ~ 18. Pielke's results were based on a subjective best fit
curve for estimates of the appropriate decay constant. Since previous

computations by Shiotani (1969) and Davenport (1961) had arrived at estimates

and a2 including

of a§ ~ 17 and a2 ~ 13 a more objective re-evaluation of a% 3

3
additional data was undertaken.

Accordingly, a computerized analysis was devised to fit a negative
exponential by non-linear least squares regression utilizing the Marquardt
algorithm (Marquardt, 1963). Standard convergence criteria were used as
supplied with the algorithm program. However the F and t-test criteria
needed therein were relaxed from 107 to 25% due to the dispersion of
coherence estimates as seen in sample computer plots. A range of Af from
0 to .12 was selected so as to eliminate high frequency noise effects.
Several difficulties arose with such an approach.

The first problem was a lack of convergence in about 10 to 15% of the
computations due to bad data. The second difficulty arose from the varying
data format between the 1967 and 1968 data. The latter instead of having
15 combinations of coherence between the levels 18, 30, 60, 90, 120 and
150 m has only the 3 combinations 18-30, 60-90 and 120-150 m. This made
inclusion of the 1968 results with the 1967 results only possible on a
level by level basis instead of a weighting according to low or high mean

heights. The results are tabulated in Table 2.1.
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TABLE 2.1
Decay Constants for aé and ag for Each Run for Selected Levels
Longitudinal aé Lateral ag
Run R123 18-30 60-90 120-150 18-30 60-90 120-150
030 -0.16 21.4 22.6 22.4 13.7 15.0 13.5
067 -0.32 21.5 17.6 20.8 11.4 13.8 13.1
086 -0.28 16.8 35.1 32.4 11.0 18.0 27.2
091 -0.17 16.8 13.4 10.9 12.6 9.9 7.4
101 -0.23 13.6 12.9 11.2 8.7 .3 6.5
121 -1.01 15.9 24.9 10.2 23.0 N 18.0
133 -0.14 17.0 18.2 14.0 13.5 15.0 12.2
138 -2.36 12.9 9.8
139 -0.69 19.0 27.1 17.2 28.9 38.0
141 -2.32 19.5 30.2 19.0 10.2 28.4 16.5
142 0.08 21.6 23.8 34.5 14.0 33.4
143 0.11 38.3 35.2 73.2 27.8 11.7 33.8
144 0.14 11.4 69.2 48.7 97.3 38.8
149 -0.60 25.1 18.1
151 -9.75 13.6 40.1
155 -0.31 11.8 13.8 12.8
156 0.02 20.0 81.8 28.2 29.3
162 -0.20 14.3 16.6
163 -0.33 29.4 42.1 33.1 29.6 25.6 36.2
165 -0.21 23.2 19.8 20.4
176 -1.08 18.3 14.0 14.8
182 -0.46 12.1 21.6 13.2 9.0 13.4 10.1
183 -0.39 11.4 30.5 18.7 17.1 36.2 15,2
189 -0.85 24.9 33.8 25.3
196 -0.44 24,2 26.1 23.2 16.4 17.5 15.8
299 -0.07 17.8 13.2 18.2 9.0 9.3 9.7
305 -0.09 22.9 18.4 16.1 12.8 17.0 11.8
308 -0.06 18.9 23.7 39.1 51.0
319 -2.54 17.9 11.7 12.6 14.4 18.4
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TABLE 2.1 (continued)

Longitudinal a% Lateral ag
Run R123 18-30 60-90 120-150 18-30 60-90 120-150
327 0.00 15.8
351 -0.69 15.4 18.1 15.7 16.2 25.9 15.1
355 -0.59 17.3 18.0 11.6 11.9 21.4 17.8
359 -0.12 19.3 26.3 15.0 14.0 12.9 13.9
361 -0.09 1 16.1 34.9 13.6 14.5 9.9 11.7
364 -0.48 22,7 27.5 15.5 15.3 15.7 11.1
366 -0.50 15.9 21.3 12.6 9.6 14.5 9.2
367 -3.39 14.6 .2 o7 12.2 14.8 12.6
369 0.07 16.6 .1 .5 12.2 7.6 6.2
377 0.08 10.7
380 0.01 15.1 19.4 11.1 10.5
389 0.08 18.3 18.1 19.5 15.4 30.5 13.4
394 0.03 22.0 21.7 12.8 13.9
415 0.00 20.3 16.1 12.6 12.7 11.3 6.
447 0.05 13.9 17.1 10.1
477 -0.12 10.4
478 0.00 14.5 20.7 18.3 14.0 17.2 10.4
480 0.00 15.3 12.0 27.7 12.5 11.0 11.7
481 0.04 18.1 18.8 31.4 13.7 17.5 9.8
515 -0.28 20.8 25.1 16.1 11.1 14.6 14.0
521 -0.07 19.4 20.3 20.3 12.1 14.7 22.1
526 -0.36 7.0 20.1 8.8 5.6 12.0 7.9
536 0.10 17.4 32.4 29.0 15.5 19.9 17.9
546 0.34 29,0 33.5 21.5 58.9 26.0
551 -8.50 8.3 9.8 13.6 15.5 15.9 7.0
555 ~-1.48 8.4 12.6 8.5 8.1 5.9 54.2
565 0.00 19.9 28.8 11.5 19.8 27.0
567 0.02 16.7 28.5 28.2 20.3 20.8 22.1
610 ~1.36 18.1 14.6 9.9 12.0 10.4 6.2
614 0.07 20.4 21.4 11.9 25.6 17.1 12.6
618 -0.33 20.9 19.3 18.3 11.5 15.6 16.8
619 19.3 21.4 20.6 12,2 13.4 14.1
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TABLE 2.1 (continued)

Longitudinal ai Lateral ag
Run R123 18-30 60-90 120-150 18-30 60-90 120-150
625 7.6 5.2 21.8 3.9
627 21.8 27.9 17.2 16.8 19.7 15.4
631 23.9 12,7 10.8 31.1 13.3 12.7
633 18.1 16.8 31.6 18.9 9.8 9.7
641 12.2 17.3 12.3 19.6 27.6 10.9
648 13.9 21.1 11.0 11.3 7.5 15.6
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After a cursory examination of the results no discernible relations
11"

could be found between the "a" values and height. Accordingly, to study

the effect of stratification upon the ai it was decided to concentrate

§°
on the 18-30 level pair initially where the Richardson number was best
determined.

Figure 2.1 shows the estimates arrived at by the least squares fit of
the lateral wind component's coherence between the levels 18 and 30 m,
plotted as a function of the Richardson number based on Chaplin's
(Blackadar, et al., 1969) work. The upper curve represents Pielke's fit
to the Cape Kennedy data; the lower curve, Pielke's fit of Shiotani's,
Davenport's and other's results. The box represents the closure of the
estimates in near-neutral (-0.2 < Ri < 0.2) fit whose weighted average
(based on the number of coherence estimates for 0 < Af < .12, for each
fit) is given by the solid straight line and whose weighted average
standard deviation is denoted by the dashed straight lines. As can be
seen the revised estimate of a§ = 13.22 £ 1.18 is in excellent agreement
with results from other sites.

Figure 2.2 represents the analogous analysis for the longitudinal wind
components. Again the upper solid curve represents Pielke's fit of Cape
Kennedy data, the lower solid curve other workers' results. The decay
constant aé ~ 18.57 £ 1,19 arrived at by an identical averaging procedure
as explained for the lateral component. Again the averaged neutral value
is in excellent agreement with the fit of results from sites excluding
Cape Kennedy.

A hypothesis was tested that the decay constant for the coherence

representation were proportional to the Monin-Obukhov similarity variable
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(Monin, 1954) ¢ defined as

o = k2 du (2.3)

the curves 13.22¢ and 18.57¢, were plotted as functions of the 18-30 m
Richardson number (Businger, 1966) in Figures 2.1 and 2.2 respectively.
"a" values and ¢'s appear to behave in similar ways. To test the Cape
Kennedy data fit explicitly, Figure 2.5 is a plot of the lateral and
longitudinal decay constants vs 13.22¢ and 18.57¢ respectively. As

can be seen the fit is not good.

The averaging technique for near-neutral stratification was extended
to the 60-90 m and 120-150 m level pairs based on a linear extrapolation

of Richardson number with height based on the Pandolfo (1966) hypothesis.

Table 2.2 tabulates the results.

Table 2.2

Decay factors in near-neutral air (-0.2 < Ri < 0.2)

Level a5 (neutral) al.¢ (neutral)
18-30 18.6 13.2
60-90 21.3 16.3
120-150 20.9 14.2

Within the errors of measurement, the near—-neutral "a" values can be

considered constant with height.
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2.3 Slopes

The slope Si introduced in Equation 2.1, can be defined as

. i
S:il =1 : can~ L ﬂ% (2.4)
2WAE cosp(Af )

where quad and cosp are the quadrature and cospectra respectively. Pielke
in his thesis found that the vertical slopes for lateral and longidudinal
wind components Sg and S; were 2.6 and 1.0 respectively. To strengthen his
conclusions further data from Cape Kennedy were analyzed.
sJ was fitted as a linear least squares approximation to the slope of
* i
the function tan—l uad(Af.) vs. 2m AfT Si utilizing the normal regression

cosP(Afl)
equations, i.e.

N . quad_(Af)
<Si> = 2 tan 1 *———E———E—
m=1 cospm(Af ) (2.5)
N i
21 & (Af )m
m=1

where N is the total number of estimates of 0 < Afi < 0.12., The averaging to
evaluate <Sg> was carried out on a level to level basis as well as on a high-
low, height distinction basis and an overall value for all heights for the
1967 data and on a level to level basis for the 1968 data. The results are
tabulated in Table 2.3.

Figures 2.3 and 2.4 epresent the results for the 18-30 m level combination
graphically. The solid curve in each case represents Pielke's original fit on
the basis of data from all possible sites. Box averaging, as employed with the
decay constants, gave mean values under neutral stratification of Sl = 1.02

3
and Sg = 1.99. The value S§ = 1.02 agrees with the previously established



30

TABLE 2.3
Slopes Si and Sg for Each Run for Selected Levels
Longitudinal Lateral

Run Ri23 18-30 60-90 120-150 18-30 60-90 120-150
030 -0.16 0.86 0.88 0.78 1.75 2.31 1.48
067 -0.32 0.43 0.12 0.17 0.98 1.09 0.58
086 -0.28 0.65 0.81 1.45 1.63 2.83 0.82
091 -0.17 0.29 0.64 0.18 1.31 0.94 0.95
101 ~0.23 1.04 0.77 0.40 1.03 0.73 0.63
121 -1.01 1.01 0.62 0.11 0.96 0.38 0.94
133 ~0.14 0.37 1.02 0.75 1.35 1.12 0.32
138 -2.36 0.78 0.39 0.96 0.15
139 -0.69 1.43 0.13 0.28 2,79 0.71 1.62
141 -2.32 0.56 1.04 0.27 1.13 1.09 1.36
142 0.08 1.12 1.27 0.45 1.87 2.02 1.61
143 0.11 1.05 0.64 1.00 2.35 1.34 0.21
144 0.14 0.50 0.39 1.15 2.44 . 0.19 2.44
149 -0.60 0.04 0.26 0.32

151 -9.75 0.82 2.97 0.98

155 -0.31 0.76 0.30 1.27

156 0.02 1.18 1.94 1.96 2.74 1.93 0.47
162 -0.20 0.57 0.54 0.31
163 -0.33 0.21 0.33 0.22 1.50 1.57 0.56
165 -0.21 0.58 0.00 0.66

176 ~-10.8 0.76 0.18 0.82

182 -0.46 0.67 0.62 0.33 1.50 0.02 0.21
183 -0.39 0.40 0.73 0.30 1.70 1.64 0.16
189 -0.85 0.90 0.88 0.39

196 -0.44 0.44 0.27 0.61 2.08 1.84 0.21
299 -0.07 0.64 0.52 0.28 1.54 1.05 0.84
305 -0.09 1.11 0.16 0.23 1.85 1.41 0.39
308 -0.06 0.95 0.73 0.04 2.37 4.74 1.83
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Longitudinal Lateral

Run R123 18-30 60-90 120~150 18-30 60-90 120-150
319 ~2.54 0.65 0.08 0.24 1.52 1.16 1.88
351 -0.69 0.05 0.25 0.31 1.41 1.92 1.08
355 -0.59 0.57 0.58 0.52 1.02 0.35 0.11
359 -0.12 0.49 0.55 0.18 1.85 1.32 0.84
361 -0.09 1.60 0.86 0.08 2,29 1.52 0.93
364 -0.48 0.13 0.04 0.03 1.47 1.26 1.21
366 -0.50 0.44 0.79 0.01 1.53 1.17 0.86
367 -3.39 0.34 0.81 1.36 0.28 0.63 1.24
369 0.07 0.92 0.84 0.01 1.53 1.28 0.18
380 0.01 0.74 0.25 1.81 1.59

389 0.08 1.33 0.63 1.07 2.01 2.06 1.70
394 0.03 1.04 1.02 1.94 2.29

415 0.00 0.62 0.73 0.32 2.09 1.73 1.12
447 0.05 1.24 2.03 1.07
477 -0.12 1.14 0.02 1.07 1,77 0.74 0.25
478 0.00 0.79 1.52 1.03 2,11 2.53 1.78
480 0.00 1.46 0.76 0.96 2.65 2.23 1.38
481 0.04 0.96 0.30 0.05 1.82 1.49 0.82
515 -0.28 0.45 0.02 0.24 1.32 1.34 0.86
521 -0.07 0.66 1.77 0.89 2.06 2.36 0.94
526 -0.36 0.43 0.38 1.14 1.94 1.30 0.37
536 0.10 1.83 2.56 0.47 2.25 2.75 0.03
546 0.34 1.60 0.58 0.34 1.57 3.39 2.79
551 -8.50 0.41 0.00 0.11 1.20 0.06 0.27
555 -1.48 0.64 0.49 0.24 1.62 0.59 0.61
565 0.00 1.39 0.63 0.97 1.99 1.99 0.92
567 0.02 0.21 1.95 1.34 2.50 2.97 1.08
610 -1.36 0.77 0.57 0.16 1.37 1.84 0.92
614 0.07 0.83 1.15 0.50 1.12 1.31 0.98
618 -0.33 0.18 0.80 0.43 1.60 1.56 1.10
619 1.40 1.70 0.80 1.69 1.35 0.69
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TABLE 2.3 (continued)

Longitudinal Lateral 7
Run Ri, 3 18-30 60-90 120-150  18-30 60-90 120-150
625 0.44 0.23 0.23 0.59 1.86 0.59
627 1.54 1.98 0.67 1.96 1.85 1.01
631 1.75 0.77 0.37 2.22 1.75 1.65
633 1.09 0.90 0.97 2.25 1.59 1.51
641 1.22 1.90 0.29 1.88 1.06 0.93
648 0.60 0.16 1.24 1.10 0.95 0.07
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value of unity. However the value S§ ~ 2, although speculated by Pielke,
does not agree well with the results of all other studies.

Again, as a hypothesis, the slopes were considered to be proportional
to the.Monin—Obukhov similarity variable ¢. Intuitively, slopes should be
proportional to wind shear, and ¢ is a normalized wind shear. Accordingly
values of 2¢ and ¢ are plotted on Figures 2.3 and 2.4. The correspondence

in each case is displayed graphically in Figure 2.6. The lateral slopes

seem to be slightly underestimated while the longitudinal slopes fit well.

As with the decay constant 'a', the slopes for near neutral stratification

were averaged. Here, the definition of near-neutral was revised to

-0.1 < Ri £ 0.1. The results for near neutral air are presented in Table 2.4,

TABLE 2.4

Slope in near-neutral air (-0.1 < Ri < 0.1)

Level Slope1on (neutral) Slopelat (neutral)
18-30 1.02 1.99
60-90 1.03 2.05

120-150 0.76 1.00

The slopes in near—neutral air appear to be constant up to about 100 m
and show a major decrease above this height. Therefore the hypothesis that
the slopes are proportional to the non-dimensional wind shear ¢ cannot be
applied above about 100 m. This follows from Pandolfo's hypothesis that ¢
in neutral air would be unity at all levels but the results show the slopes
decreasing. Accordingly the effects of decreasing stress and Ekman inertia

musi: be included.
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2.4 Conclusions

The re-evaluation of Cape Kennedy data in conjunction with previous

1
results strongly suggest constant values of ai ~ 19; ag ~ 13; slope3 ~ 1

and slopeg ~ 2 in neutral stratification below about 100 m.
The variation of slope with Richardson number Ri is proportional to

the variation of ¢. Also, the dependence of "a" is of a similar general

character.
The decay constant at Kennedy in the vertical air are the same as
those elsewhere in neutral air; but a discrepancy still exists in unstable

air, where coherence at Kennedy is less than elsewhere.
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ITI. THE ESTIMATION OF TOTAL DISSIPATION

R. C. Goff

3.1 Formulation of estimate

The total dissipation, E, is defined by

150
E = J pe dz (3.1)
Z
o
where p is the density and € the local dissipation. The lower limit z follows
from the convention that the ground is defined as z = z > where the wind speed
vanishes.

An attempt was made to derive a method for estimating E from observations
of temperature and wind at the lowest levels of the tower only, given the
roughness length from a prior calibration of the site.

It was shown earlier (Blackadar, et al., 1969) that, above z = 18 meters,

the dissipation was well described by:

3
u -1/4
e = —9 (1-18%) -
o

2 (3.2)

z2_
L
o
where Use is the surface friction velocity and LO is the Lettau-Monin-
Obukhov length obtained from observations near the ground.
Below z = 18 meters, the expression in brackets is small so that the

fraction of E below 18 meters is
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Integration of Equation 3.2 from 18 meters to 150 meters shows that the

fraction of E above 18 meters is given by:

ux o[ - 182/L0)l/4 -1 ] 1
ET = p ko in 174 + 2 tan
@ -18z/L )" +1 |
150 (3.3)
1/4 =z
aa - lSz/Lo) - T
° 18

z, had been previously estimated as:

a) 0.159 m for dense woods (Zone 1),

b) 0.039 m for low scrub and sand (Zone 2),

¢) 0.121 m for low trees and hummocks (Zone 3).
The zones above are defined on the basis of the azimuth angle, 9, centered
at the Kennedy tower, i.e.

Zone 1 180° < 6 < 300°

Zone 2 300° < 6 < 090°

Zone 3 090° < 6 < 180°.
Lo was determined by first obtaining a Richardson number at 23 meters from
the wind speeds and temperatures at 18 meters and 30 meters, and then putting
z/L0 = Ri,

Uk could then be obtained from:

Mo ” Rn{l—s] - llJ[z/L] (3.4)

3.2 Results
Table 3.1 gives the run numbers, Lo’ and the "lower" (z0 <z <18 m)
and "upper" (18m < z < 150m) portions of the estimated E, as well as the

total E. Clearly, the contributions of these portions are of the same
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TABLE 3.1

Vertically integrated dissipation of theoretical
and observed methods for various runs

Lower Upper Total Lower Upper Total
Run Lo ET ET ET Eo Eo Eo
013 =575 9.27 2.64 11.90 11.08 1.43 12.52
030 =144 3.72 1.16 4.88 4.10 0.81 4.91
067 - 72 1.99 0.84 2.83 1.68 0.46 2,15
086 - 82 0.40 0.21 0.61 0.34 0.29 0.63
091 -136 1.51 0.62 2.13 2.64 1.33 3.96
133 -165 0.61 0.22 0.84 1.00 0.30 1.30
141 -10.0 0.24 0.53 0.77 0.56 0.45 1.01
149 -38.5 0.70 0.57 1.27 0.66 0.28 0.95
162 -115 0.47 0.21 0.68 0.68 0.18 0.86
163 - 70 0.33 0.17 0.50 0.50 0.54 1.04
165 -110 1.08 0.45 1.53 1.28 0.46 1.74
176 -21.4 0.15 0.20 0.35 0.22 0.15 0.37
182 - 50 0.60 0.33 0.93 0.98 0.48 1.45
183 - 59 0.33 0.16 0.48 0.70 0.76 1.46
189 -27.0 0.95 0.84 1.78 0.83 0.20 1.03
196 - 52 1.00 0.52 1.52 1.36 0.44 1.80
299 =344 1.81 0.65 2.46 1.49 0.85 2.35
305 -253 3.13 0.88 4.01 1.95 1.16 3.11
308 -377 8.88 3.20 12,01 4.33 1.25 5.58
309 -38.5 1.61 1.38 2.99 2.23 1.54 3.77
310 -140 8.55 3.48 12.03 10.70 4,21 14.92
316 -3.0 0.42 3.04 3.47 0.99 0.71 1.70
319 -9.1 0.57 1.38 1.94 0.98 1.41 2.39
326 - 71 0.60 0.31 0.91 0.77 0.90 1.67
335 - 66 0.48 0.21 0.70 0.82 0.65 1.47
337 - 55 4.11 2.08 6.18 3.44 1.79 5.23
351 -33.5 2.07 1.53 3.60 3.05 1.04 4.09
355 -39.2 0.30 0.19 0.49 0.47 0.64 1.12

359 -188 5.67 2.03 7.70 5.60 2.03 7.63
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TABLE 3.1 (continued)

Lower Upper Total Lower Upper Total
Run Lo -E'I.‘ ET ET Eo Eo Eo
361 -251 5.09 1.75 6.84 4.15 1.64 6.39
364 ~484 1.15 0.64 1.78 1.16 0.62 1.78
365 -9.8 0.95 2.64 3.59 0.95 0.62 1.57
366 -46.5 1.17 0.67 1.84 1.58 1.27 2.85
406 =42.3 0.42 0.26 0.68 0.52 0.64 1.17
477 -20.0 1.23 0.43 1.66 1.95 0.60 2.55
515 -81 1.08 0.43 1.51 1.88 1.14 3.02
521 -316 2,12 0.72 2.84 3.80 1.24 5.04
526 -65 1.53 0.90 2.43 3.72 2.10 5.82
529 -284 1.10 0.31 1.40 1.44 0.68 2.12
551 -2.7 0.13 1.01 1.13 0.28 0.24 0.52
554 ~14.1 0.28 0.45 0.73 0.34 0.31 0.65
554 -15.6 0.49 0.71 1.20 0.62 0.47 1.09
610 -16.9 0.52 0.86 1.37 0.64 0.39 1.03
618 -71 3.38 1.45 4.84 3.02 1.30 4.32
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order of magnitude; the upper portions are relatively larger, the more
unstable the air (see Fig. 3.1).

The estimates of E were compared with "observed" E. Below 18 meters,
the same formula was used as that for the estimated values, except that
"observed" z values were used for each run. At and above 18 meters, values
of local dissipation were computed from the high frequency portion of the

spectra of the longitudinal wind component

e = [s (k)/b] 3/2k15/2 (3.5)

where b = 0.14 for longitudinal spectra and 0.18 for lateral spectra and kl
is the wave number in radians per unit length. The integral in Equation 4.1
was evaluated by the trapezoidal approximation between 18 and 150 meters
from observations at six levels.

Table 3.1 also lists observed lower and upper portions of E, as well
as total E, and Figure 3.2 compares 'observed" and "estimated" total E.

There is a fair amount of scatter in the figure, but no systematic

difference between ordinate and abscissa.

REFERENCES

Blackadar, A. K., J. A. Dutton, H. A. Panofsky, and A. Chaplin, 1969:
Investigation of the turbulent wind field below 150 m altitude at
the Eastern Test Range, NASA CR-1410, 92 pp.
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1IV. ESTIMATION OF VARIANCES

H. A. Panofsky and V. Mirabella

4.1 Variances at 18 meters

According to Monin-Obukhov similarity theory, the standard deviations

of longitudinal and lateral wind components are given by:

Gu = ¢u (z/L)u, 4.1
g, = ¢V (z/L)u, (4.2)
Here u

x 18 the friction velocity and ¢u and ¢v are universal functions of
z/L where L is the Lettau-Monin-Obukhov length. Whereas it is generally agreed
that expressions of the form of Equations 4.1 and 4.2 fit statistics of the
vertical velocity quite well, there is considerable doubt about the adequacy

of the equations for Ou and GV. Nevertheless, these equations will be used

in an attempt to understand these variables.

First, u, was estimated from the wind equation:

- KV
*  2n Z/zo - Y(Ri)

u (4.3)
where V is the mean wind at a low level (here taken to be 18 m), z0 is the
roughness length, Y(Ri) is a universal function well known in unstable air
and k is the von Karman's constant which is usually taken as 0.4,

Ri was estimated from the temperatures and wind at 18 m and 30 m (so
that it applies at 23 m), and then multiplied by 18/23 to yield a value at
18 meters according to Businger's hypothesis. The roughness lengths used
were those computed from observed spectra at high frequencies, as suggested

by Panofsky (1969).
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Figures 4.1 and 4.2 show the relations between the standard deviations
and the friction velocity at 18 meters. Straight lines with slopes of 2.3
fit the data reasonably well, with standard deviations of .19 and .29 for
the longitudinal and lateral velocity components, respectively. These lines
were fitted by least squares and forced to pass through the origin. As can
be seen from the graphs, the scatter is greater for the lateral component
than the longitudinal component. This can be partially explained by the
fact that the ratio Ou/u* is relatively insensitive to changes in
stability as is shown in Figures 4.3 and 4.4.

In the estimates of variance described so far, it was assumed that
separate roughness lengths could be obtained for each run from observed
spectra at all tower levels. In many practical situations, the site will
have been ''calibrated" previously so that roughnesses can be preassigned,
often varying with wind direction. In the case of the Kennedy tower, the
values of z, adapted on the basis of prior work are given in the article
by Panofsky (1969) and since slightly modified. Revised friction velocities
were calculated based on these roughness lengths.

Figures 4.5 and 4.6 show Uu and Ov as functions of these estimates of

u The slope in the case of 9, is about 2.24 and the scatter is slightly

.
less than in Figure 4.1. This suggests that the average values of z in
the various sectors are more nearly correct (less influenced by random
error) than the zo's observed separately for every run. Figure 4.5

itself leads to a good estimate of o, at 18 meters given u, from Equation
4.3. The slope for OV is about 2.27 and the scatter is also slightly less
than that of Figure 4.2.

Figures 4.7 and 4.3 show the variations of (Ou/u*)18 and (cv/u*)18 as

a function of the Richardson Number at 18 meters using the zone zo's. The
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friction velocity at 18 m utilizing a roughness length determined
from averaged upwind zone conditions.
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scatter of the points about the line for Gu/u* in Figure 4.7 is essentially
independent of Richardson Number, showing that o, can be taken as a constant
at 18 meters within the experimental error. As was the case for Figure 4.4,
the ratio Ov/u* as computed with the sector zo's is correlated with Ri as shown
in Figure 4.8. This type of relation would also be expected from Prasad's
summary (1967). In other words ¢v varies with Ri from about 2.3 in neutral
air to about 3.0 in very unstable air.

Presumably, optimum estimates of g, at 18 meters would be obtained by

computing u, from Equation 4.3 and then multiplying by Gv/u* given by

*

Figure 4.8. Still the statistical error would be large.

4.2 Change of variances with height

Let
Ou = ¢ u
= * '
150 150 150 (4.4)
and
Ou, . = 0] u
. * 4.5
18 18 “x g (4.5)
where ¢150 and ¢18 are constants, and the subscripts refer to height in meters.

Subtracting Equation 4.4 from Equation 4.5, we find

o, -O© = (P10 = b1cq) U, t+ ..o B (150 - 18) (4.6)
Uig Ui50 18 150 18 150
BU*
WhereB——g-.
Given an estimate of o from Figure 4.5 we can estimate O from
"18 Y150

Equation 4.6 if we know its right hand side. The quantity B follows from

the equations of motion (neglecting accelerations)
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Here, f is the Coriolis parameter and Vg the component of the geostrophic
wind at right angles to the surface wind. The ratio Vg/u* is theoretically
a constant in neutral air and has been recently been found to be the same
constant in unstable air as well (Sheppard, to be published, 1970). Thus,
the last term in Equation 4.6 can be taken as constant at a given latitude

in neutral and unstable air.

If ¢ -0 should be independent of wind speed. To

=¢.cqs O
18 150 Uyg ;50
test this hypothesis, Figure 4.9 gives the relation between O -0C and
Y18 ‘150
the wind at 18 meters. Apparently, there is quite a strong relationship.

Hence ¢18 = ¢150. However, Figure 4.9 can be used to estimate Guls - 0“150

given V Once this difference is given, o, at other levels can also be

18°
determined since the distribution of Gu with height is approximately linear.
Actually, there is reason to doubt that the relation between u, and o,
should be different at different levels. If the relation is general, the
observations here could be explained if the values of o, at 150 m had been
underestimated by perhaps 10Z%Z, possibly because low frequencies which had
been filtered out in the analysis procedure, contributed more to G than

Y150

to O'u
18.
An analogous procedure is performed for the change of Ov with height

and Figure 4.10 is a plot of © -a as a function of the wind at 18
v v
18 150
meters. The scatter is quite large probably due to the fact that the

terms depend upon stability.
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Figure 4.9 Difference of the variances of the longitudinal wind component
at 18 m and 150 m as a function of the mean wind at 18 m.
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